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Abstract. An algebraic approach to the inverse eigenvalue problem for a quantum system with 
a dynamical group is formulated for the first time. The one-dimensional problem is heated 
explicitly in detail for both the finite-dimensional and infinite-dimensional Hilbert spaces. For 
the finite-dimensional Hilberl space, the su(2) algebraic representation is used; while for the 
infinite-dimensional Hilbert space, the Heisenberg-Weyl algebraic representation is employed. 
The Fourier expansion technique is generatized to the operator space, which is suitable for 
analysis of irregular spectra. The polynomial operator basis is also used for the complement, 
which is appropriate for analysis of some simple Hamiltonians. The proposed new approach 
is applied to salve the classical inverse Stm-Liouville problem and to study the problems of 
quantum regular and irregular spectra. 

1. Introduction 

Quantum theory has two major problems for solution: the bound-state eigenvalue problem 
and the scattering or reaction problem. The direct problem of quantum mechanics is: given 
a Hamiltonian of a quantum system, compute all the data of the eigenvalue problem and 
the scattering or reaction problem. The inverse of the above problem is as follows: given 
a set of necessary and sufficient data, construct a Hamiltonian to reproduce this data. This 
is called the inverse problem of quantum theory. 

In recent decades, a new physical-mathematical discipline-the theory of the inverse 
problem-has been developed rapidly. This nonlinear physical-mathematical theory has 
been a great achievement [I]: it has become an interdisciplinary study 121. The quantum 
inverse theory addresses two major topics: the inverse scattering problem and the inverse 
eigenvalue problem. The former topic has received much more attention, and a large 
number of papers have been published in this field [l]. However, the latter topic has 
received relatively less attention. 

Since the pioneering work of Borg [3] and Levinson [4] on the inverse Sturm-Liouville 
problem, the conventional inverse eigenvalue problem has addressed the recovery of the 
potential from knowledge of eigenenergies and eigenfunctions assuming that the kinetic 
energy operator of the Hamiltonian is given. Borg and Levinson stressed the need for 
two spectra for the recovery of the potential [3,4]. Following the work of Krein [SI and 
Gel'fand and Levitan [6], it has become clear that one spectrum together with knowledge 
of the eigenfunctions at one end-point is sufficient to recover the potential. 
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Owing to the extensive and intensive study of nuclear physics and atomic physics, 
it is known that dynamical symmetry plays an important role in the microscopic world 
[7]. For instance, for many microscopic systems, such as the hydrogen atom, the diatomic 
molecule with Morse potential, the nuclear shell model and the nuclear collective model, 
their Hamiltonians can be expressed in terms of generators of a certain kind of dynamical 
group. This fact confirms Dirac’s profound idea that quantum mechanics can be expressed in 
terms of some dynamical algebras 181. For a system with a dynamical group, the important 
thing is not the division between the kinetic energy and the potential, it is the algebraic 
structure of the total Hamiltonian. Therefore, for a dynamical algebraic system, one still 
needs the method for solving the inverse problem. It is the purpose of this work to deal 
with the inverse eigenvalue problem for a quantum system with a dynamical group. 

The need to address the quantum inverse eigenvalue problem has recently become 
urgent, because of the study of quantum chaos /9-11]. One major topic of quantum chaos is 
the statistical behaviour of the eigenstates of a quantum system. Many examples investigated 
have shown regular or chaotic behaviour of the energy specua. But little information has 
been gained as to what the relation between the statistical property of the energy spectrum 
and the structure of the corresponding Hamiltonian is. To study the problem in general, 
one needs to establish the physical-mathematical connection between a Hamiltonian and 
its bound state data. The inverse eigenvalue theory addresses this problem and is very 
desirable. It is also the purpose of this work to deal with the inverse eigenvalue problem 
and its application to the spectrum problem of quantum chaos. 

The paper is organized as follows. In section 2 we shall formulate the inverse eigenvalue 
problem for a system with a dynamical group in detail. We try to solve the problem 
not only in principle, but also in practice, i.e. to make it calculable. Some modern 
mathematical techniques are employed to make the problem solvable within the capacity 
of currently available computers. After the problem is properly posed in section 2.1, a 
general procedure for solution is sketched in section 2.2. The inverse problem for one 
dimension in configuration space and finite dimensions in Hilbert space is formulated in the 
representation of the nonlinear su(2) algebra in section 2.3. Section 2.4 is devoted to the 
one-dimensional problem for infinite-dimensional Hilbert space in the representation of the 
nonlinear Heisenberg-Weyl algebra. In this section, the Fourier series expansion technique 
is generalized to the operator space. It is found that the Fourier series expansion technique 
in nonlinear operator space is a very powerful and elegant means of solving the problem. 
In section 2.5, the polynomial representation is given. It is found that the operator power 
basis and the polynomial basis are suitable for handling relatively simple Hamiltonians. 
For the highly nonlinear operator problems, they often yield violently fluctuating expansion 
coefficients. In contrast, the Fourier expansion technique in operator space is suitable 
for handling more complicated Hamiltonians, especially chaotic systems, just as it does 
in function space for the spectrum analysis of the noise of various waves. In section 3, 
the method developed above is applied to study first the classical inverse Sturm-Liouville 
problem, then the quantum regular spectra, and finally the problem of the quantum chaotic 
spectrum. The outlook and a discussion are given in section 4. 

2. Quantum inverse eigenvalue problem 

2. I .  Specification of the problem 
Before starting the main text, we should properly describe our problem to be solved in order 
to avoid misunderstanding. The inverse eigenvalue problem of quantum mechanics can be 
described by the following three categories: 
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(i) Inverse problem within Heisenberg mechanics. This is the matrix form of quantum 
mechanics. Here any operator including I? is a matrix. If E.  and @# are given, the required 
Hamiltonian is just 

However, this kind of solution is of little use, since I? is directly expressed in terms of the 
input data. It is too empirical to exploit its algebraic structure. 

(ii) Inverse problem within Dirac mechanics. This is the algebraic form of quantum 
mechanics where any operator is a function of certain algebra a = (in}. For the 
Hamiltonian, 

A = H&). 

In this case, the inverse problem is not trivial. It is a complicated task to ConstlllCt a 
Hamiltonian which is a nonlinear function of the algebraic generators X, and reproduces 
the given data. This is an intrinsic expression of fi since it is no longer expressed directly 
in terms of the empirical data, but expressed in terms of a certain algebra which dictates a 
Hilbert space. With the help of the algebra one could study the symmetry of the Hamiltonian. 
By virtue of the coherent state method, one can study the semiclassical and classical limit 
of the system. 

(iii) Inverse problem within Schrodinger mechanics. This is the differential form of 
quantum mechanics where fi is expressed in terms of differential operators, for instance 
coordinates .? and momenta 6: 

I? = H(.?,$).  

Since f and fi constitute Heisenberg algebra, the inverse problem in fact belongs to category 
(ii) with the requirement that the algebra should take the differential form. 

In this paper, we shall specify our inverse eigenvalue problem as category (ii) or (iii). 

2.2. Procedure of solution 

Now we restate our inverse eigenvalue problem as follows: given a set of eigenenergies E, 
and eigenstates in some representation space of a certain algebra, how can a Hamiltonian 
which is expressed in terms of the algebra and can reproduce the data E. and @= be 
constructed? 

The problem will be solved in three steps: 

(i) Consmct a Hamiltonian HO from a complete set of commuting operators (Cartan 
subalgebra for a Lie algebra for instance) of the algebra [&}, 

A. = Ho(i , )  (2.4) 

which should reproduce the eigenenergies. Suppose the eigensolutions of (&] are In), 
namely 

iriln) = niln). (2.5) 
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That & reproduces E, means 
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= %In) 

where 

E,  = Ho(ni). 

The above equation determines uniquely. 
(ii) Construct a unitary operator ir in terms of [in), 

fi = U(f&) f i t  = 6-1, 
which transforms In) to @", namely 

where 

U,. = (nlirlm). 

The above equation uniquely determines fi. 
(iii) The required Hamiltonian fi is 

fj = fi&fi-l  

(2.10) 

(2.11) 

since 

AI@") = f i & i r - ' l ~ ~  = ir&In) = EJQ~). (2.12) 

Thus the inverse problem becomes finding the operators & and 6. In the following 
we proceed to solve the problem explicitly for the one-dimensional case, 

2.3. One dimension. Finite-dimensional Hilbert space 

Since the SU(2) group has only one kind of elementary excitation, i.e. (j+, j - ) ,  it is a one- 
dimensional dynamical group and its irreducible representation spans a finite-dimensional 
Hilbert sptce.- Therefore our discussion in this subsection is based on the su(2) algebra: 
su(2) = (J+.  J - ,  J,). Assume an su(2) IRR basis is Ijm),  such that 

. f l jm)  = mljm)  m = -j , . . . , +j. (2.13) 

The Hilbert space is of 2j+ 1 dimensions. Since we are working in a single j-representation, 
we shall drop the j-label when no confusion would be caused. Assume a set of data E.  
and @n is given in such a Hilbert subspace. The @" can be expanded in terms of the su(2) 
IRR basis, 

(2.14) 

Therefore, giving tlr. and giving U,, are equivalent. The inverse problem will be solved 
as follows: 
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(i) $. Since f i ~  is a function of the Cartan operator j ,  of su(2), it can be expressed in 
terms of the Fourier series of j ,  in general, 

Bo = h, exp(ia,j,) 
P 

(2.15) 

where a, = 2np/ (2 j  + l ) (p = -j,. . . ,+ j ) ,  and h, is to be determined. 
equation (2.13), we have 

From 

&bJ = E"lm) (2.16) 

where 

E, = h,exp(ia,m). 
P 

The solution of h, is 

1 
h - - c E, exp(-ia,m) 

' - 2 J + 1  , 

(2.17) 

(2.18) 

Since for any given E, the solution (2.18) always exists and h l ,  = h,, the expansion (2.15) 
is justified and the Hermicity of f i ~  is guaranteed. 

(ii) ir. Next we shall find the operator ir which transforms the vectors Im) back to the 
given vectors @m. Let the operator be expressed in terms of the products of two different 
rotations. Since there are (2j + I)* components of in the Hilbert space, we express fi as 

(2.19) 

where &(e = 0 - n )  is a rotation generator around some fixed axis and p. q are in the range 
(- j ,  +j). This axis must be chosen to prevent the singularity of the solution in equation 
(2.19). The unitarity of U will impose a restriction on Dp9. For simplicity we shall restrict 
this axis in the x y  plane, making an angle of 0 with the y-axis, namely 

^ *  
= exp(-ieJ,)J,exp(iej,). (2.20) 

Let us calculate 

U,, = (nlirlm) 
= C D , ~  (nl exp(ia, Se) exp(ia9 .?,) lm) 

(2.21) 

The dAi(a) are the usual d-functions as defined in [13]. We can express d i i ( a )  as a sum 
of Fourier components, 

d:;(a) = in-"' AknAkm exp(-ika) (2.22) 
k 
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where 

(2.23) 

x exp(-ikra,,) exp(-ikpY,). (2.24) 

Furthermore, since A,, is real, 

Equation (2.24) can be transformed as 

and the Fourier transformation gives the solutions of the coefficients D,,, 

The value of B must he chosen carefully, so that none of the d:i2(6') vanish. In particular, 
we want to caution that, if B is set to a / 2 ,  which corresponds to setting .& = jz, then the 
values of d i ' (0 )  and dg'(B) become zero for odd k in the even j case, and also for even 
k in the odd j case. How*ever, the singularity does not occur for the case of half-integer j .  

Finally, the Hamiltonian fi is related to f i ~  by a similar transformation: 

A = O$O-'. (2.28) 
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2.4. One dimension. Infmite-dimensional Hilbert space 

Since the irreducible representation of the one-dimensional Heisenberg-Weyl (HW) group 
spans an infinite-dimensional Hilbert space, we are now working in the HW algebraic 
representation. For the coordinate .? and momentum j v  the HW algebra is 

h w = [ t , B , l i = 1 ( j 2 + . ? 2 - 1 ) ] .  (2.29) 

Its generators satisfy the following commutator relations: 

[t, 81 = i [A, t] = -ib [i, 81 = E. (2.30) 

The IRR basis In) is the eigenfunction of A, 
Aln) = nln) (2.31) 

which is just the eigenfunction of one-dimensional harmonic oscillator. 

the following Fourier series: 
(i) &. Since 60 is a function of the Cartan operator A, it can be expressed in terms of 

N 

&, = jlI x [ h ,  exp(iupA) + h i  exp(-iupA)l (2.32) 
p=1 

where a, = 2np / (N  + 1 )  and N + 1 represents the dimension of the Hilbert space. It 
should be remarked that the limit N + 00 in equation (2.32) is in a weak sense which 
is suitable for a practical calculation (the same is true for equations (2.51) and (2.52)). In 
fact, for a practical calculation, one can only work in a truncated subspace with a finite 
dimension, and N thus becomes a large, integer. From equations (2.31) and (2.32), we have 

kolm) = EmIm) (2.33) 

where 
N 

E, = lim z [ h ,  exp(ia,m) + h~exp(-iru,m)]. (2.34) 
N + I  

p=1 

The solution of h, is 

(2.35) 

Since for any given E,  the solution (2.35) always exists, the expansion (2.32) is thus 
justified and the Hermiticity of 60 guaranteed. 

(ii) 6. Assume 

fi = dr ds D,, exp(irP) exp(is8). (2.36) s 
The unitarity of 6 imposes a restriction on 4,. Let us calculate 

(2.37) 
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Introducing the plane wavefunction, 
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(2.38) 

and multiplying (ml exp(-h;) exp(-irf)ln) from both sides of equation (2.37) and 
summing over m and n, we obtain 

and 

RHS = dr'ds'D,t,, Tr(exp[-i(r - r')i]  exp[-i(s - s');]] s 
= 2~ D,,, . 

Therefore, the solution is 

(2.39) 

(2.40) 

(2.41) 

Further manipulation [ 141 yields 

where L: is a Laguerre function 

2.5. Polynomial representation 

As was pointed out in the introduction, the above Fourier expansion technique is suitable 
for treating a complicated Hamiltonian. For a simple Hamiltonian, it i s  more convenient to 
employ a polynomial representation. To solve the problem, we write the Hamiltonian as 

.+=&+P (2.43) 

where fio and ? are to be determined from the diagonal and off-diagonal matrix elements 
of 6, respectively, and H,, are given in a basis diagonalizing eo. 
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2.5. I .  Finite-dimensional Hilbert space. su(2) representation. In such a case, we write 
and 3 as 

and 

(2.44) 

(2.45) 

Where T, is the Chebyshev polynomial of the first kind. The diagonal elements of fi 
determine the structure of $, 

Z j  

p=O 
Hmm = (mlf i lm) = x h , T , ( m / j ) .  

The h ,  can be obtained from the above equation. As j is very large, one has 

(2.46) 

The off-diagonal elements off? can be used to determine 9, namely 

21 

P.q=I 
x m n  = D p q [ T p ( m l j ) V , f +  V,;T,(nIj)l 

from which the coefficients D ,  can be obtained. Here, 

vi,+ = (ml.f:In) vi; = (ml2ln) .  

2.5.2. Infinite-dimensional Hilbert space. HW representation. In this case, we assume 

(2.48) 

(2.49) 

(2.50) 

and 

The diagonal elements of fi are used to determine the io, 
N 

H,,,, = lim x h p T p [ ( 2 m  - N ) / N ]  
P=o 

N-m 
(2.52) 
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which yields the solution 
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The P or Dpq are determined by the off-diagonal elements of 8, 

(2.54) 

where 

X i ,  = (ml(P - ifi)*ln) (2.55) 

and Im) is the eigenfunction of it. 

the input data E, and en. 
It should be pointed out that the matrix elements of 8, Hmn. can be calculated from 

3. Application 

3.1, One-dimensional inverse Sturm-Liouville problem 

The inverse Sturm-Liouville problem is usually formulated and solved by virtue of 
differointegral equations. In this subsection we shall solve the problem by the algebraic 
method developed above. Since the problem is typical and classical for the inverse 
eigenvalue problem, the algebraic solution of the problem is a good test of our approach. 

From the viewpoint of our algebraic approach,the inverse Sturm-Liouville problem is 
such that the Hamiltonian 8 = 80 + !?, where HO (the free Hamiltonian or the operator 
for kinetic energy) is fixed, while the potential P is to be determined from the data of the 
eigensolutions of B. 

The one-dimensional inverse Sturm-Liouville problem is as follows [16, 171: for the 
boundary eigenvalue equations 

u;(x) t [A. - p(x)lu.(x)  = 0 

u;co, = U"(1) = 0 

x E [O, 11 

where U&) satisfy the orthonormal relation 

0 1  

(3.3) 

and given the data (u,(O), An] ,  construct the potential @ ( x ) .  We apply the method developed 
in section 2 to solve the problem. From the boundary conditions (3.2), one finds the working 
basis, 
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In the basis Iu,,), we have 

and 

(3.7) 

Where unp or u,(O) are given and qp is to be determined. The Hamiltonian is 

d2 
dx2 ri = -- + a @ ) .  (3.8) 

The mabix elements of H can be calculated in two ways. A direct calculation gives 

From the eigenrepresentation of k, 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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where 
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The solution is 

(3.15) 

(3.16) 

From equations (3.12) and (3.16), we obtain a set of nonlinear equations for unP, 

(3.17) 

which are homogeneous because of the orthonormal conditions of unP (equation (3.6)). 
Equations (3.7), (3.16) and (3.17) constitute a set of basic equations for the one- 

dimensional inverse Sturm-Liouville problem. If both eigenvalues and eigenvectors are 
given, the information is sufficient to construct the potential just using equations (3.16) and 
(3.7). If only A, and u,,(O) are known, one has to resort to the nonlinear equation (3.17). 
This is the price paid for less information. 

Example. 
(3.17) with unP and summing over n and p .  we have 

Given A.. = [(2n+ 4)aI2 and ~"(0) = 4, calculate B(x) .  Multiplying equation 

(3.18) 

Since C, Dprp # 0, det C-' # 0, and [(Zm + f)n]* z 0, we have the solution 

U,, = 6m,v and ~ ~ ( 0 )  = A. (3.19) 

From equation (3.16), we obtain qp = 0 and {(x) = 0. 

3.2. Quantum regular spectrum 

We consider the inverse problems for regular quantum spectra in the 4 2 )  and the KW 
representations. 

3.2.1. Finite-dimensional Hilbert space. su(2) representation. 
Example 1. Given Em = m and U,, = 8,,, construct A. From equation (2.18) and as j 
is very large, we have 

(3.20) 
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fio can be obtained from equation (2.15), 

= .f, j -+ m. (3.21) 

From equations (2.22) and (2.27), one has 

I ^  
From equations (2.19) and (2.28), we obtain fi = I, and H = Jz. 

Example 2. Given H,,,, = ms,,,,,, construct fi. 
have from equation (2.47) 

We use the polynomial representation. Since Hmm = jTt(m/j). as j is very large, we 

while equaton (2.44) yields fi0 = jTt(.fJj) = .f,. In equation (2.48). since the coefficient 
determinant is non-zero, H,,,, = 0 (m # n )  yields the vanishing solution Dp4 = 0. Thus 

3.2.2. tnjinite-dimensional Hilbert space. HW representatton. 
Example I. 

A I  A 

H = Ho = J2. 

Given E, = m and U,. = a,,, construct H. 
From equation (2.35) we have 

2~ a 
i--6 (a,) 

a N  
i- Cexp(-ia,m) = Iim 

1 
h - lim - N - ~  Z ( N  + 1) aa, N - . ~  Z(N + 1) aa, 

(3.24) 

while equation (2.32) yields 

D,, can be calculated from equation (2,411, 

From equation (2.36), one has 

fi = dr ds s(r)J(s)  exp(ir2) exp(isj) = 1. s - * ^ ^  
Hence H = U H o U - ’ = l i = f ( B 2 + 5 * ) - f .  

(3.26) 

(3.27) 
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Example 2. Given H,. = mamn, construct 8. 

N ) / N )  + TO] and substitute it in equation (2.53) 
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Working in the polynomial representation, we rewrite H.. = n = (N/Z)[Tj((Zn - 

2 -112 h - lim N ( 2  - "') [TI  ( T) 2 2 - N  + To] Tp (v) [ 1 - (7) ] 
- N+m 2 ( N  + 1)n 

N 
= lim -(aP,l + S p , o ) .  

N-tm 2 

From equation (2.50), we obtain 

N 2 r i - N  
= lim - (' + 1) = 1. 

N+m 2 

(3.28) 

(3.29) 

Since in equation (2.54) the coefficient determinantAis no?-zero, H,, = 0 (n  # m )  yields 
the solution D,, = 0. Therefore, we finally obtain H = H, =A. 

3.3. Quantum irregular spectrum 

In this subsection, we shall employ the information contained in this paper to study 
the problem of quantum chaos. We start with the following question: given a set of 
eigenenergies E, and eigenstates 9" with GOE (Gaussian orthogonal essemble) [ 121 statistics 
built in, is it possible to construct a Hamiltonian within some dynamical algebra to reproduce 
the data? A positive answer can be obtained with the help of the preceding results. Since 
the data E.  and the data I,& can be used to construct the 80&) and the fi&), respectively, 
the Hamiltonian 8 = fikofi-' is the required one that can reproduce the data. From a 
practical point of view, since a physical data set is usually finite, the construction of 8 
can be conducted in a finite-dimensional Hilbert space, the calculability of which is limited 
merely by the capacity of modem computers. 

The results obtained in section 2 provide some new insight into the problem of quantum 
chaos. From the above discussion we h o w  that, the information of the energy spectrum is 
related to an integrable Hamiltonian 80 which generates a set of regular eigenstates with 
good quantum numbers ( n i )  [15], while the information of the eigenstates is connected 
with a unitary transformation which destroys the good quantum numbers and makes the 
wavefunctions more complicated. This result indicates that as only eigenenergies are 
concerned, even an integrable Hamiltonian [15] can yield a COE energy spectrum. This 
contradicts the conventional point of view that an integrable Hamiltonian cannot have a GOE 
energy spectrum. The information of the eigenfunctions on the other hand is more essential 
to construct a non-integrable Hamiltonian, since the fi which is related to the wavefunctions 
destroys good quantum numbers and makes the system non-integrable. The above fact tells 
us that the information of the energy spectrum alone is insufficient to make a judgement 
about the chaoticity of a quantum system, while the information of the eigenstates is more 
important in this respect. Here one finds a kind of classicalquantum correspondence in the 
chaotic case: the classical chaoticity is related to the chaotic trajectories, while the quantum 
chaoticity is connected with the irregular eigenwavefunctions, 



Algebraic approach to the inverse eigenvalue problem 5669 

The information provided in this paper also helps us to understand the results obtained 
in our recent study of quantum chaos. In [18] we constructed a one-dimensional SU(2) 
model whose energy spectrum can show both GOE and Poisson statistics, as the parameters 
were properly chosen. Since the common expectation is that a one-dimensional integrable 
system should not show GOB statistics [19], and Poisson statistics in conservative systems are 
usually found for at least two dimensions [ZO], this result is remarkable and deserves further 
investigation. At first glance this result is astonishing, but it is not difficult to understand 
from the above results. In section 2 we have shown in detail that a one-dimensional 
Hamiltonian can be constructed from any type of input data En and $rn including, of course, 
GOE type or Poisson type. This implies that the one-dimensional SU(2) Hamiltonian can 
show GOE or Poisson statistics of its eigenspectrum if it is properly constructed. This is 
a new insight into the one-dimensional problem. The question is how a relatively simple 
Hamiltonian can produce very complicated GOE statistics. The inverse method developed 
in this paper unfortunately cannot answer this question. However, the level dynamics 
reformulated in [18] can shed some light on this difficult problem: if a relatively simple 
Hamiltonian has a large number of strong avoided level crossings during the change of its 
perturbation strength, the fluctuation in both E, and $rn will be set in and the system could 
exhibit GOE statistics. 

4. Discussion 

In this paper, we have presented an algebraic approach to the inverse eigenvalue problem for 
a quantum system with a dynamical group. In comparison with the classical Sturm-Liouville 
inverse eigenvalue problem, three points in our approach are different and deserve remarking 
on. (i) Instead of recovery of a potential, our task is to reconstruct a whole Hamiltonian. 
Thus the recovery of a potential is just a special case. (i) Rather than considering a 
general Hamiltonian, a class of physically relevant Hamiltonians with dynamical group 
structures is studied here. Specifically speaking, the Hamiltonian investigated in this paper 
is a nonlinear function of the generators of a certain kind of dynamical algebras and an 
object of the corresponding enveloping algebra. (iii) Since a physically relevant algebra 
usually dictates a special structure of a Hilbert space and its representation provides a basis 
for the Hilbert space, the inverse eigenvalue problem formulated in this basis becomes 
an algebraic problem. Thus our algebraic approach is complementary to the conventional 
differential-integral approach where the representation basis is just the Dirac delta function. 

Just as in the conventional approach to the inverse problem, in this paper the 
onedimensional problem is solved also with a great detail for both finite and infinite 
dimensional Hilbert spaces, and the analytical expressions for the expansion coefficients 
of the Hamiltonian are given. For the multidimensional cases, the generalization presents 
little difficulty. 

As applications, our approach has been tested first by the classical Sturin-Liouville 
inverse eigenvalue problem and then by several simple examples where the analytical results 
can be obtained. For more complicated spectra, the recent new results of the SU(2) model 
are discussed and explained. 

For the inverse problem in general, several questions deserve discussion. The first 
question is the existence and uniqueness of the solution. Since our method is essentially a 
constructive approach and the expression of the solution is given explicitly, the existence 
problem is of course solved. As to the uniqueness, there are two aspects to be investigated: 
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(i) The uniqueness of H in a subspace. Since the Hamiltonian constructed in different 
bases has different expressions but reproduces the same eigensolution in the subspace, it is 
unique by definition. 

Usually, the Hamiltonians 
constructed in a subspace and expanded in terms of different bases are not equivalent 
and will yield different eigensolutions in an enlarged space. To obtain a unique solution 
in the whole Hilbert space, one needs either to work in a very large Hilbert space that 
approaches the whole Hilbert space in the limit or to work in the whole HiIbert space from 
the beginning. In section 3 (applications), we did that and obtained the unique solution 
applicable in the whole Hilbert space. 

Another interesting problem is related to the power of the inverse theory. There are two 
opposite sides in the inverse problem. On one hand, one has numerical input data (@,, and 
En), which is the phenomenological aspect of the problem. The quantity of information 
contained in the input data is very large. One the other, one h a s  a Hamiltonian 6 which 
represents the natural law governing the phenomenon. The quantity of information contained 
in F? (i.e. the number of parameters contained in A) is less. The line of reasoning in the 
direct problem is from the natural law to its governing phenomenon. In the course of 
solving the direct problem, the relevant information is expanded. Logically this is a kind 
of deduction. The line of reasoning in the inverse problem is the opposite. It goes from 
the phenomenon to its underlying law. The information is compressed during the process 
of solution. Logically this is a kind of induction. From the above discussion we see that 
the method of the inverse problem is a tool that helps to compress information and discover 
natural laws from the phenomenological input. 

(ii) The uniqueness of I? in the whole Hilbert space. 
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